Colloquium - Gennady Shvets | Department of Physics

Colloquium - Gennady Shvets

Event Information
Event Date: 
Tuesday, October 7, 2014 - 3:30pm
Event Location: 
PHYS 104

From Meta to Meso: Science and Applications of Metamaterials-Inspired Nanophotonics

Abstract:

Metamaterials are artificial electromagnetic materials exhibiting unusual optical responses that are difficult to elicit from naturally-occurring media. Those include negative refractive index, strong magneto-electric response, and highly asymmetric/non-reciprocal behaviors. Metamaterials and meta-surfaces represent a remarkably versatile platform for light manipulation, biological and chemical sensing, and nonlinear optics. Many of these applications rely on the resonant nature of metamaterials, which is the basis for extreme spectrally selective concentration of optical energy in the near field. In addition, metamaterial-based optical devices lend themselves to considerable miniaturization because of their sub-wavelength features. This additional advantage sets metamaterials apart from their predecessors, photonic crystals, which achieve spectral selectivity through their long-range periodicity. Remarkably, some of the most exciting applications and the most inspiring fundamental science can be found at what I would call a mesoscopic boundary between photonics crystals (wavelength-scaled periodic arrangements of simple building blocks) and traditional metamaterials (deeply sub-wavelength arrangements of highly sophisticated designer elements). This transition to metamaterials-inspired nanophotonics requires considerable rethinking of some of the most basic tenets of traditional metamaterials, such as collective effects, the role of optical retardation and nonlinearity, hybridization and strong coupling of nanoscale materials with photonic structures, integration of metasurfaces with microfluidic delivery systems, and the interaction of such structures with wavelength-size objects such as biological cells. I will illustrate these points using some of the examples from our group's recent work. The examples will include all-dielectric super-chiral metasurfaces, graphene-based modulators of infrared light, and photonic topological insulators capable of guiding light around sharply curved trajectories. The concluding remarks will address future directions of research, including nonlinear graphene photonics using metasurfaces, characterization/detection of circulating tumor cells, and the integration of inherently quantum objects with metamaterials.

[1] C. Wu et. al., Nature Materials 11, 69 (2012).

[3] A. B. Khanikaev et. al., Nature Materials 12, 233 (2013).

[2] C. Wu et. al., Nature Commun., 5, 3892 (2014).